

(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) 국제특허분류(Int. Cl.)

A61K 36/71 (2006.01) **A61K 9/16** (2006.01) **A61K 9/20** (2006.01) **A23L 1/30** (2006.01)

(21) 출원번호

10-2015-0014131(분할)

(22) 출원일자 심사청구일자

2015년01월29일 2015년01월29일

(62) 원출원

특허 10-2013-0076190

원출원일자 심사청구일자

2013년06월30일

2013년06월30일

(11) 공개번호 10-2015-0021096

(43) 공개일자 2015년02월27일

(71) 출원인

재단법인 전남생물산업진흥원

전남 나주시 동수농공단지길 30-5, (동수동)

(72) 발명자

최철웅

광주광역시 서구 풍암순환로 10 호반중흥1단지 아

파트 105동 203호

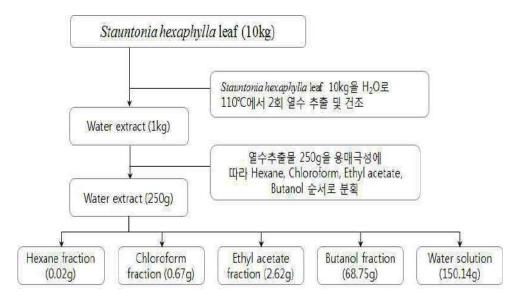
반상오

광주광역시 북구 평교로29번길 23

(뒷면에 계속)

(74) 대리인

최석진


전체 청구항 수 : 총 8 항

(54) 발명의 명칭 멀꿀 잎 조추출물을 유효성분으로 포함하는 연골조직 생성 촉진용 약학 조성물

(57) 요 약

본 발명은 조골세포분화 또는 연골세포 분화 촉진용 조성물에 관한 것으로서, 보다 구체적으로는 천연원료를 이 용하여 독성 및 부작용 없이 안전하게 사용될 수 있는 멀꿀 잎 추출물을 함유하는 골 및 연골 조직 손상의 억제 및 치료를 위한 용도로 사용될 수 있는 골(조직) 생성 촉진용 조성물에 관한 것이다. 본 발명에서의 멀꿀 잎 추 출물을 유효성분으로 포함하는 약학 조성물은 연골조직생성촉진 또는 예방하기 위한 치료제로 사용될 수 있다.

대 표 도 - 도1

(72) 발명자

설희진

광주광역시 남구 봉선2로 96-14 무등2차아파트 20 3동 806호

이규옥

전라남도 장흥군 장흥읍 우드랜드길 136 성은연립 주택 101동 404호

장욱진

전라남도 장흥군 장흥읍 장흥대로 3492 계명아파트 1005호

김희숙

경상남도 고성군 개천면 구만로 337-8

김재용

전라남도 순천시 왕궁길 60 중흥파크맨션 304동 207호

강후원

전라남도 나주시 영산포로 205-7 (영산동)

이동욱

전라남도 장흥군 장흥읍 북부로 39 수창아트빌아파 트 203호

김선오

광주광역시 북구 양일로 52-1 연제2차대주피오레아 파트 201동 1003호

김재갑

경기도 부천시 소사구 경인로134번길 51 삼익아파 트 2동 507

박준영

전라남도 무안군 삼향읍 어진누리길 68

특허청구의 범위

청구항 1

멀꿀 잎 조추출물을 유효성분으로 포함하는 연골조직 생성 촉진용 약학 조성물

청구항 2

제1항에 있어서, 상기 멀꿀 잎 조추출물은 물, 메탄올, 예탄올, 프로판올, 이소프로판올, 부탄올 또는 이들의 혼합용매 중에서 선택되는 어느 하나로부터 가용한 추출물인 것을 특징으로 하는 멀꿀 잎 조추출물을 함유하는 연골조직 생성 촉진용 약학 조성물

청구항 3

제2항에 있어서, 상기 용매를 사용하여 추출한 멀꿀 잎 조추출물에 비극성용매로서 핵산, 클로로포름, 디클로메탄 및 에틸아세테이트 중에서 선택되는 어느 하나를 분획용매로 사용하여 분획한 것을 특징으로 하는 멀꿀 잎 조추출물을 함유하는 연골조직 생성 촉진용 약학 조성물

청구항 4

제1항 내지 제3항 중 어느 한 항의 조성물은 0.01 내지 99.9중량%로 포함되는 것을 특징으로 하는 멀꿀 잎 조추출물을 함유하는 연골조직 생성 촉진용 약학 조성물

청구항 5

제4항에 있어서, 상기 멀꿀 잎 조추출물의 1일당 투여량은 체중 kg당 10 내지 1000mg/kg의 양으로 공급되는 것을 특징으로 하는 멀꿀 잎 조추출물을 포함하는 연골조직 생성 촉진용 약학 조성물

청구항 6

제4항에 있어서, 상기 조성물은 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸, 경피제, 좌제 또는 멸균 주사용 액으로 제형화된 것을 특징으로 하는 멀꿀 잎 조추출물을 포함하는 연골조직 생성 촉진용 약 학 조성물

청구항 7

제1항 내지 제3항 중 어느 한 항에 있어서 상기 멀꿀 잎 조추출물은 연골조직 생성촉진 또는 치료용으로 사용되는 것을 특징으로 하는 멀꿀 잎 조추출물을 포함하는 연골조직 생성 촉진용 약학 조성물

청구항 8

제1항 내지 제3항 중 어느 한 항의 연골조직 생성 촉진용 약학 조성물을 0.01 내지 99.9중량%로 포함하는 연골조직 생성 촉진용 기능성 건강식품

명세서

기술분야

[0001] 본 발명은 연골조직 생성 촉진용 약학 조성물에 관한 것으로서, 보다 구체적으로는 멀꿀 잎 조추출물을 함유하는 천연원료를 이용하여 독성과 부작용이 없이 안전하게 사용될 수 있는 연골 조직 손상 억제와 치료를 위한 용도로 사용될 수 있는 연골조직 생성 촉진용 약학 조성물에 관한 것이다.

배경기술

- [0002] 골 조직은 대체로 뼈의 표면이 튼튼한 치밀골질로 이루어지고, 중심부 또는 장골(長骨)의 양 끝은 골질이 그물 눈같이 연합된 해면골질(海綿骨質)로 되어 있다. 대부분의 뼈는 처음에 결합조직 중의 연골로서 발생하여 이것 이 나중에 골조직으로 바뀌는데, 일부 뼈는 결합조직 중에서 직접 만들어진다.
- [0003] 골단(骨端)에서는 이웃뼈와 접하는 부분에 관절면이 있고, 그 표면은 초자연골(硝子軟骨)인 관절연골로 덮여 있다. 해면질 가운데의 해면소주(海綿小柱)는 일정한 배열로 되어 있는 것이 특징이다. 골 간부(骨幹部)의 넓은 수강(髓腔)은 해면소주로 된 소강(小腔)과 연속되어 있고 모두 골수로 채워져 있다.
- [0004] 조혈작용을 하는 골수는 혈관이 많이 분포되어 붉은색을 띠며, 적색골수라고 한다. 골질의 구조는 치밀질이나 해면질 모두 두께 5~12ᡣ의 골판이 겹쳐 있는데, 치밀질에서는 동심원상으로 몇 층이 겹친 골층판(하버스층판)이 여러 방향으로 배열되어 있고, 각 층판의 중심에는 하버스관이 있어 혈관이 통한다.
- [0005] 골 세포는 골충판 사이에 배열되어 있으며, 불규칙한 별 모양으로 가는 원형질 돌기로 인접한 다른 골세포와 연결되어 있다. 뼈의 표면에는 질긴 결합조직성 골막이 있으며, 신경과 혈관이 분포되어 뼈의 보호와 영양을 맡고 있다. 골막이 결손되면 뼈의 생존, 신생 및 재생 등이 곤란하게 된다. 골질의 성분은 수분 20%, 세포를 포함한 유기질 35%, 무기질 45%인데, 뼈의 일정한 탄력성은 유기질이 있기 때문이다. 연령이 증가함에 따라 무기질(주로 인산칼슘)이 증가하여 뼈의 경도도 증가한다.
 - 한편 멀꿀은 학명 Stauntonia hexaphylla로서 식물계, 속씨식물문, 쌍떡잎식물강, 미나리아재비목에 속하는 식물이다. 주로 한국, 일본, 타이완, 중국 등지에 분포하고, 원줄기는 5m 정도 뻗어가고 잎은 어긋나며 5~7개의 작은 잎으로 된 손바닥모양 겹잎(掌狀複葉)이다. 작은 잎은 두껍고 달걀모양 또는 타원형이며 가장자리가 밋밋하다. 잎자루는 길이 6~8cm, 작은 잎자루는 3cm이다. 꽃은 5월에 피고 1가화(一家花)이며 황백색이고 총상꽃차례[總狀花序]에 달린다.
 - 암꽃의 작은 꽃가지는 가을에 적갈색으로 되고 많은 피목(皮目)이 있어 거칠다. 열매는 장과(漿果)로 달걀모양 또는 타원형이고 길이 5~10cm이며 10월에 적갈색으로 익고 과육(果肉)은 으름보다 맛이 좋다. 종자는 달걀모양의 타원형으로 흑색이다.
 - 본 발명은 우리나라에서 흔히 구할 수 있는 천연재료로서 멀꿀 잎 추출물을 이용하여 치주염 또는 골다공증 치료, 예방을 위한 약학 조성물을 제공할 목적으로 멀꿀 잎 열수추출물, 멀꿀 잎 열수추출물의 에틸아세테이트 분획물을 추출하여 조골세포 ALP 활성 및 조골세포 분화 촉진실험 및 골 또는 연골조직의 생성 촉진 실험을 실시하였다.
- [0009] 실험 결과 멀꿀 잎 조추출물이 연골조직 생성 촉진 및 예방과 관련한 효과가 있다는 것을 실험적으로 확인함으로서 멀꿀 잎 조추출물을 이용한 골생성 촉진용 약학 조성물 및 치료제를 제공하고자 한다.

선행기술문헌

특허문헌

[0006]

[0007]

[0008]

[0010] (특허문헌 0001) 국내 공개특허공보 제10-2013-0020095호에는 멀꿀 추출물을 포함하는 간 보호용 조성물에 관한 것으로 식용으로 식물 유래 멀꿀 추출물은 부작용이나 안전성에 대한 문제가 없고, 간 독성 물질인 사염화탄소 또는 아세트아니모펜(APAP)을 처리한 간독성 유도 실험동물 모델에서 유의적으로 지질과산화를 억제하고, 혈청 중 GOT 및 GPT 수치 증가를 억제하며, 간 보호, 간 손상 예방 및 간 기능 개선 효과가 있는 것으로 확인됨에 따라 본 발명의 조성물은 간 질환 치료 또는 예방용 의약 조성물 또는 간 기능 개선 또는 간 보호용 식품 조성물뿐만 아니라, 피로회복 또는 숙취해소와 관련된 다양한 용도로 응용될 수 있는 구성이 개시되어 있다.

(특허문헌 0002) 국내 등록특허공보 제10-11675890호는 멀꿀 열매 추출물을 유효성분으로 포함하는 항염 조성물에 관한 것이다. 상기 멀꿀 열매 추출물은 세포 독성이 없을 뿐만 아니라, 염증과 관련된 여러 사이토카인 (cytokine)의 mRNA의 전사 수준 및 NO 분비량을 확인한 결과, 멀꿀의 여러 부위 중 멀꿀 열매가 가장 효과적으로 염증을 저해할 수 있는 것으로, 이를 유효성분으로 포함하는 항염 조성물은 염증과 관련된 질병에서 염증을 억제하는 항염증제 및 항염효과가 있는 화장료 조성물 등으로 응용될 수 있는 멀꿀 열매 추출물을 포함하는 항염증제에 관하여 개시되어 있다.

(특허문헌 0003) 국내등록특허공보 제10-1243115호에는 멀꿀 잎 추출물이 세포독성이 없을 뿐만 아니라, 기존 해열효과를 갖는 해열제와 비교하여서도 우수한 해열 효과를 갖는 멀꿀 잎 추출물을 유효성분으로 포함하는 해열제에 관하여 개시되어 있다.

(특허문헌 0004) 국내 등록특허공보 제10-1221617호는 멀꿀 잎 추출물을 유효성분으로 포함하는 항염조성물에 관한 것으로 멀꿀 잎 추출물은 세포독성이 없을 뿐만 아니라, 염증과 관련된 사이토카인(cytokine)의 mRNA의 전사수준, NO 분비량 및 염증의 원인이 되는 COX-2 효소의 저해활성을 확인함으로서 효과적으로 염증을 저해할 수 있는 멀꿀 잎 추출물을 포함하는 항염증제에 관하여 개시되어 있다.

(특허문헌 0005) 그러나 상기 선행 기술에는 멀꿀 잎 조추출물이 본 발명에서와 같이 천연재료로서 멀꿀 잎 조추출물을 골다공증 치료 또는 예방하기 위한 약학 조성물로 활용하기 위한 목적으로 멀꿀 잎의 열수추출물, 멀꿀 잎 열수추출물의 에틸아세테이트 분획물을 추출하여 조골세포 ALP 활성 및 조골세포 분화 촉진실험 및 골 또는 연골조직의 생성을 촉진실험을 통한 골생성 촉진용 조성물로서 이용되는 구성은 개시되지 않은 점에서 본 발명과는 차이를 보인다.

발명의 내용

[0011]

[0014]

해결하려는 과제

본 발명은 천연물인 멀꿀 잎 유래 추출물을 유효성분으로 사용함으로써 장기간 복용하여도 부작용 없이 안전한 골 및 연골 조직 손상의 억제 및 치료를 위한 용도로 사용될 수 있는 연골 조직 생성 촉진용 멀꿀 잎 조추출물함유 약학조성물을 제공하고자 한다.

과제의 해결 수단

- [0012] 본 발명의 목적을 달성하기 위해, 멀꿀 잎 조추출물 또는 비극성가용 추출물을 유효성분으로 포함하는 연골 조 직 손상의 억제, 치료를 위한 연골조직 생성 촉진용 약학조성물을 제공한다.
- [0013] 멀꿀 잎 조추출물은 물, 메탄올, 에탄올, 프로판올, 이소프로판을, 부탄을 또는 이들의 혼합용매 중 어느 하나에서 가용한 추출물로서 상기 비극성 용매는 헥산, 클로로포름, 디클로메탄 및 에틸아세테이트 중에서 선택되는 어느 하나일 수 있다.
 - 멀꿀 잎 열수추출물은 조골세포에서 생성되는 ALP 활성 및 조골세포 분화를 증가시키는 기능이 있고, 멀꿀 잎 열수추출물의 에틸아세테이트 분획물은 조골세포에서 생성되는 ALP 활성 및 조골세포 분화를 증가시키는 기능을 갖는다.
- [0015] 또한, 멀꿀 잎 조추출물은 전체 약학조성물의 0.01 내지 99.9중량%로 포함되며, 약학조성물의 1일당 투여량은 상기 추출물이 10 내지 1000mg/kg 체중으로 제공되는 것을 특징으로 한다.

발명의 효과

[0016] 본 발명의 멀꿀 잎 열수추출물, 멀꿀 잎 열수추출물의 에틸아세테이트 분획물의 조골세포 ALP 활성 및 조골세포 분화를 촉진시킴으로써 연골조직의 생성을 촉진하는 효과가 확인됨으로써 멀꿀 잎 조추출물을 유효성분으로 포함하는 약학 조성물은 연골 생성촉진 및 치료제로 사용될 수 있다.

도면의 간단한 설명

[0017] 도 1은 멀꿀 잎 열수 추출물과 분획물의 제조 모식도이다

도 2는 멀꿀 잎 열수 추출물의 ALP활성에 미치는 영향을 나타낸 그래프(골아세포 분화를 통한 골형성 촉진 활성)이다.

도 3은 멀꿀 잎 열수 추출물 에틸아세테이트 분획물의 ALP활성에 미치는 영향을 나타낸 그래프이다.

도 4는 멀꿀 잎 열수추출물, 멀꿀 잎 열수추출물의 에틸아세테이트 분획물의 ALP 활성 염색 결과를 나타낸 그래 프이다.

발명을 실시하기 위한 구체적인 내용

[0018] 본 발명은 멀꿀 잎 조추출물 또는 비극성가용추출물을 유효성분으로 포함하는 골 및 연골 조직 손상의 억제 및 치료를 위한 골조직 생성 촉진용 약학조성물 및 이를 이용한 치주염 또는 골다공증 치료제를 제공한다.

1. 멀꿀 잎 열수추출물 제조

[0019]

[0021]

[0022]

[0023]

[0024] [0025]

[0026]

[0028]

[0029]

[0030]

[0020] 도 1은 멀꿀 잎 열수 추출물과 분획물의 제조를 위한 모식도를 나타낸다. 멀꿀 (Stauntonia hexaphylla) 잎 10㎏을 증류수로 수세한 다음, 증류수 200닎를 가하고, 전기약탕기로 110℃에서 4시간 동안 가열하여 추출하였다. 400 메쉬 여과포로 여과한 다음 감압회전농축기로 농축하였다.

여과 후 남은 잔사에 다시 동량의 증류수를 사용하여 동일 과정으로 2번 더 추출, 여과 및 감압 농축한다. 농축 된 열수추출물을 동결건조기(Freeze dryer)에서 동결건조 하였다. 이 과정을 통해 멀꿀 잎 열수추출물 1kg (10%)을 얻었다.

2. 멀꿀 잎의 극성용매, 비극성용매 가용 분획물의 제조

도 1에서 도시된 바와 같이 제조된 멀꿀 잎 열수추출물을 유기 용매를 이용하여 다음과 같이 분획하였다.

2.1. 헥산 가용성 분획 분리

멀꿀 잎 열수추출물로서 얻어진 멀꿀잎 추출물 250g을 5L의 증류수에 완전히 용해시킨 후에 분획여두에 넣고 헥산 5L를 첨가하여 헥산 불용성층(수층)과 헥산가용성층을 분리하였다. 다시 헥산 불용성층(수층)을 대상으로 동일한 공정을 3번 반복하여 헥산 불용성 분획 및 가용성 분획을 수집하였다.

2.2. 클로로포름 가용성 분획분리

[0027] 헥산불용성 분획(수층)에 클로로포름 5L를 가하여 섞은 후에 클로로포름가용성 분획 및 불용성 분획을 분리하였고, 클로로포름 불용성층(수층)을 대상으로 동일한 공정을 3번 반복하여 클로로포름 불용성 분획 및 가용성 분획을 수집하였다.

2.3. 에틸아세테이트 가용성 분획분리

클로로포름 불용성 분획(수층)에 에틸아세테이트 5L를 가하여 섞은 후에 에틸아세테이트 가용성 분획 및 불용성 분획을 분리하였고, 에틸아세테이트 불용성층(수층)을 대상으로 동일한 공정을 3번 반복하여 에틸아세테이트 불 용성 분획 및 가용성 분획를 수집하였다.

2.4. 부탄올 가용성 분획분리

[0031] 에틸아세테이트 불용성 분획(수층)에 부탄올 5L를 가하여 섞은 후에 부탄올 가용성 분획 및 불용성 분획을 분리하였고, 부탄올 불용성층을 대상으로 동일한 공정을 3번 반복하여 부탄올 불용성 분획 및 가용성 분획을 수집하였다.

[0032] 2.5. 물층 분획분리

[0033] 멀꿀 잎 열수추출물 250g을 5L의 증류수에 완전히 용해시킨 후에 분획여두에 넣고 상기 헥산 가용성층, 클로로 포름 가용성층, 에틸아세테이트 가용성층 그리고 부탄올 가용성층을 분획 분리 후 농축하여 남아있는 유기용매 를 제거하고 물 분획을 수집하였다.

[0034] 이와 같은 멀꿀 잎 열수 추출 및 분획물 수득과정을 통해 제조된 멀꿀 잎 열수추출물 250g에서 핵산 가용성 분획, 클로로포름 가용성 분획, 에틸아세테이트 가용성 분획 및 부탄올 가용성 분획을 감압 농축한 후에 동결 건조함으로서 핵산분획 0.02g(0.015), 클로로포름 분획 0.67g(0.27%), 에틸아세테이트 분획 2.62g(1.05%), 부탄을 분획 68.75g(27.5%), 물 분획 150.14g(60.06%)을 얻어 시료로 사용하였다.

[0035] 3. 멀꿀 잎 열수 추출물에 의한 조골세포의 AP 및 ALP의 활성측정

도 2는 멀꿀 잎 열수 추출물의 ALP활성에 미치는 영향을 나타낸 그래프(골아세포 분화를 통한 골형성 촉진 활성)이다.

3.1 멀꿀 잎 열수 추출물에 의한 조골세포의 AP 활성측정

조골세포는 ALP 활성을 나타내므로, 상기에서 수득된 멀꿀 잎 열수 추출물이 조골세포에서 ALP 활성에 미치는 영향을 측정하였다. 구체적으로, 조골모세포인 C2C12 cells을 48well에 5 x 10^4 cell/well이 되도록 분주하고 세포성장 배지인 10% FBS, 0.1% p/s을 함유한 α-MEM essential medium에서 3일 동안 세포를 배양하였다. 3일 뒤에 조골세포 분화를 유도하기 위하여 1% horse serum, 0.1% p/s을 함유한 α-MEM essential medium으로 교환해 주었다. 그 후 10ng/ml의 BMP-2(bone morphogenic protein-2)를 처리하고, 시료를 농도(10, 50ug/ml)별로 동시에 처리한 후 4일간 배양하였다. 이어 세포를 0.01% Triton X를 포함한 AP assay buffer (kit)로 처리한 후, 1000x g에서 5분간 원심분리하여 ALP 활성검색에 필요한 시료를 수득 하였다.

ALP가 p-니트로페닐포스페이트 (p-nitrophenylphosphate)를 p-니트로페놀 (p-nitrophenol)과 포스페이트 (phosphate)로 분해시키는 것을 이용하여 405 nm에서의 흡광도의 변화를 이용하여 ALP 활성을 측정하였다. 단백 질의 농도는 BioRad 단백질 분석키트를 사용하였다. ALP 활성은 PNP uM/min/mg protein으로 나타냈다.

3.2. 멀꿀 잎 열수 추출물에 의한 조골세포의 ALP 활성측정

멀꿀 잎 열수 추출 및 분획물 수득과정을 통해 얻어진 멀꿀 잎 열수 추출물들을 각각 농도별로 즉, 열수추출물 (10, 50ug/ml)을 조골모세포(C2C12 cel)l에 처리하고, 4일간 배양한 다음 조골세포의 ALP 활성에 미치는 영향을 측정하고 그 결과를 도 2에 그래프로 나타내었다. 도 2에서 보는 바와 같이, BMP-2와 멀꿀 잎 열수추출물(10, 50ug/ml)을 동시에 처리한 실험군의 경우, BMP-2를 처리한 대조군에 비해 농도 의존적으로 ALP 활성이 증가하는 것으로 관찰되었다.

또한 멀꿀 및 열수추출물(10, 50ug/ml)을 단독으로 처리한 경우, BMP-2를 처리하지 않은 정상군에 비해 농도 의존적으로 ALP 활성이 증가하는 것으로 관찰되었다. 이와 같은 결과는 ALP가 조골세포의 분화 및 활성 증가에 의해 방출되는 효소로서 이러한 ALP의 활성증가는 조골세포 활성 및 증가와 직접적으로 연관되어 있으므로, 멀꿀 및 열수 추출물에 의한 ALP 활성의 증가는 직접적인 조골세포의 분화 및 활성증가에 의한 골형성 촉진효과를 증명하는 것이다.

4. 멀꿀 잎 열수 추출물의 에틸아세테이트 분획물에 의한 조골세포의 AP 및 ALP의 활성측정

[0044] 도 3은 멀꿀 잎 열수 추출물 에틸아세테이트 분획물의 ALP활성에 미치는 영향을 나타낸 그래프이다.

4.1 멀꿀 잎 열수 추출물의 에틸아세테이트 분획물에 의한 조골세포의 AP 활성측정

조골세포는 ALP 활성을 나타내므로, 앞서 수득된 멀꿀 잎 열수 추출물의 에틸아세테이트 분획물의 조골세포에서 ALP 활성에 미치는 영향을 측정하였다. 구체적으로, 조골모세포인 C2C12 cells을 48well에 5 x 10^4 cell/well이 되도록 분주하고 세포성장배지인 10% FBS, 0.1% p/s을 함유한α-MEM essential medium에서 3일 동안 세포를 배양하였다.

3일 뒤에 조골세포 분화를 유도하기위하여 1% horse serum, 0.1% p/s을 함유한 α-MEM essential medium으로 교환해 주었다. 그 후 10ng/ml의 BMP-2(bone morphogenic protein-2)를 처리하고, 멀꿀 잎 열수 추출물의 부탄 올 분획물의 HP-20 column 용출물 HP20-2를 농도(5, 10ug/ml)별로 동시에 처리한 후 4일간 배양하였다. 이어 세 포를 0.01% Triton X를 포함한 AP assay buffer (kit)로 처리한 후, 1000 x g에서 5분간 원심분리하여 ALP 활성검색에 필요한 시료를 수득하였다.

[0047]

[0036]

[0037]

[0038]

[0039]

[0040]

[0041]

[0042]

[0043]

[0045]

[0046]

- 7 -

- [0048]
- ALP가 p-니트로페닐포스페이트 (p-nitrophenylphosphate)를 p-니트로페놀 (p-nitrophenol)과 포스페이트 (phosphate)로 분해시키는 것을 이용하여 405 nm에서의 흡광도의 변화를 이용하여 ALP 활성을 측정하였다. 단백 질의 농도는 BioRad 단백질 분석키트를 사용하였다. ALP 활성은 PNP uM/min/mg protein으로 나타냈다.
- [0049]
- 4.2 멀꿀 잎 열수 추출물의 에틸아세테이트 분획물에 의한 조골세포의 AP 활성측정
- [0050]
- 멀꿀 잎 열수 추출물의 에틸아세테이트 분획물을 각각 농도별로 즉, 멀꿀 잎 열수 추출물의 에틸아세테이트 분획물 (5, 10ug/ml)을 조골모세포(C2C12 cell)에 처리하고, 4일간 배양한 다음 조골세포의 ALP 활성에 미치는 영향을 측정하고 그 결과를 도 3에 그래프로 나타내었다.
- [0051]
- 도 3에서 보는 바와 같이, BMP-2와 멀꿀 잎 열수 추출물의 에틸아세테이트 분획물(5, 10ug/ml)을 동시에 처리한 실험군의 경우, BMP-2를 처리한 대조군에 비해 농도 의존적으로 ALP 활성이 증가하는 것으로 관찰되었다. 또한 멀꿀 잎 열수 추출물의 에틸아세테이트 분획물 (5, 10ug/ml)을 단독으로 처리한 경우, BMP-2를 처리하지 않은 정상군에 비해 농도 의존적으로 ALP 활성이 증가하는 것으로 관찰되었다.
- [0052]
- ALP는 조골세포의 분화 및 활성 증가에 의해 방출되는 효소로 이러한 ALP의 활성증가는 조골세포 활성 및 증가와 직접적으로 연관되어 있으므로, 본 발명의 멀꿀 잎 열수 추출물의 에틸아세테이트에 의한 ALP 활성의 증가는 직접적인 조골세포의 분화 및 활성증가에 의한 골형성 촉진효과를 증명하는 것이다.
- [0053]
- 4.3. 멀꿀 잎 열수 추출물의 에틸아세테이트 분획물에 의한 조골세포의 AP activity 염색
- [0054]
- 조골모세포인 C2C12 cells을 48well에 5 x 104 cell/well이 되도록 분주하고 세포성장배지인 10% FBS, 0.1% p/s을 함유한 a-MEM essential medium에서 3일 동안 세포를 배양하였다. 3일 뒤에 조골세포 분화를 유도하기 위하여 1% horse serum, 0.1% p/s을 함유한 a-MEM essential medium으로 교환해 주었다. 그 후 10ng/ml의 BMP-2(bone morphogenic protein-2)를 처리하고, 시료를 농도별로 동시에 처리한 후 4일간 배양하였다.
- [0055]
- 본 발명에서는 조골세포의 분화 유도인자인 BMP-2 (10ng/ml)를 처리한 양성대조군, 멀꿀 잎 열수추출물의 에틸 아세테이트 분획물(5, 10ug/ml)을 단독 처리한 실험군, 아무것도 처리하지 않은 정상군으로 분류하여 각각 조골 세포 분화(osteoblast differentiation) 정도를 NBT/BCIP 기질을 이용한 AP 활성자리 염색을 통해 측정하였다.
- [0056]
- 구체적으로 4일간 배양이 끝난 세포의 배양액을 제거하고 1xPBS로 3번 cell을 씻는다. 10% 포르말린 용액으로 실온에서 15분동안 cell을 고정시키고 1xPBS로 3번 cell을 씻어 잔여 포르말린을 제거한다. 1x alkaline phosphaste 용액으로 cell을 다시 씻어낸 다음 NBT/BCIP 기질용액으로 AP 활성자리를 염색하였다.
- [0057]
- 도 4는 멀꿀 잎 열수추출물, 멀꿀 잎 열수추출물의 에틸아세테이트 분획물의 ALP 활성 염색 결과를 나타낸 그래 프이다. 도 4에서 나타낸 바와 같이, 실험결과 BMP-2만을 처리한 양성대조군의 경우, BMP-2와 시료를 처리하지 않은 정상군에 비해 NBT/BCIP에 의한 세포 염색이 더 많이 되었음을 확인하였다.
- [0058]
- 멀꿀 잎 열수추출물의 에틸아세테이트 분획물(5, 10ug/ml)을 단독 처리한 실험군의 경우, BMP-2와 시료를 처리하지 않은 정상군에 비해 NBT/BCIP에 의한 세포 염색이 더 많이 되었음을 확인하였다.
- [0059]
- ALP는 조골세포의 분화 및 활성 증가에 의해 방출되는 효소로 이러한 ALP의 활성증가는 조골세포 활성 및 증가와 직접적으로 연관되어 있으므로, 본 발명의 멀꿀 잎 열수추출물의 에틸아세테이트 분획물에 의한 ALP 활성의증가는 직접적인 조골세포의 분화 및 활성증가에 의한 골형성 촉진효과를 나타낸다고 할 수 있다.

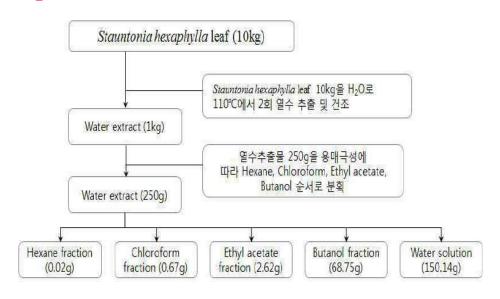
[0060]

5. 멀꿀 잎 조추출물을 유효성분으로 포함하는 연골 조직 생성 촉진용 약학조성물 및 연골조직생성 촉진용 예방 치료제

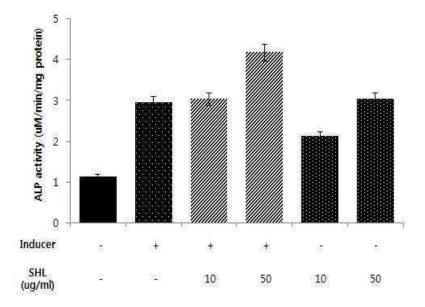
- [0061]
- 연골조직 생성 촉진용 약학 조성물을 이용한 골다공증 예방 또는 치료제는 상기 조성물이 0.01 내지 99.9중량%로 포함되도록 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸, 경피제, 좌제 또는 멸균 주사용액으로 제형화하여 제조할 수 있다.
- [0062]
- 멸균주사액의 경우, 상기 약학조성물이 0.01 내지 99.9중량%로 포함하도록 하고 정제수 또는 포도당을 99.9 내지 0.01 중량%를 혼합하여 제조 가능하다. 캡슐제의 경우, 상기 약학조성물을 동결건조하여 0.01 내지 99.9중량%로 포함하도록 하고, 비타민제, 칼슘제을 99.9 내지 0.01 중량%를 혼합하여 제조 가능하다.
- [0063]
- 상기 제조된 약학조성물의 1일당 투여량은 상기 추출물이 10 내지 1000mg/kg 체중 포함되는 함량으로 제공한다.

[0064]

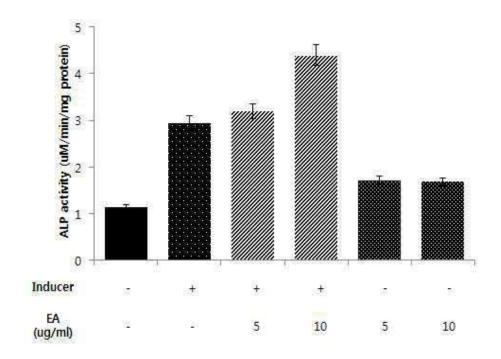
또한 상기 약학 조성물을 0.01 내지 99.9중량%로 포함하는 골다공증 개선, 예방용 기능성 건강식품으로도 제조 가능하다.

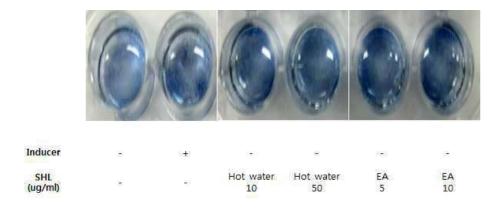

산업상 이용가능성

[0065]


본 발명의 멀꿀 잎 열수추출물, 멀꿀 잎 열수추출물의 에틸아세테이트 분획물의 조골세포 ALP 활성 및 조골세포 분화를 촉진시킴으로써 연골조직의 생성을 촉진하는 효과가 확인됨으로서 멀꿀 잎 추출물을 유효성분으로 포함하는 약학 조성물은 치주염 또는 골다공증을 치료 또는 예방하기 위한 골다공증 치료제로 사용될 수 있고 제조원료를 자연에 서식하는 식물로 대체함으로 제조생산단가 절감과 산업화를 통한 수입대체 및 수출효과를 기대할수 있을 것이다.

도면


도면1


도면2

도면3

도면4

